A Systems View Of The Stroke

In a ‘systems thinking’ viewpoint on the swimming stroke (including all of the stroke styles) we understand that each body part has an influence over other body parts and is influenced by other body parts connected to it by one or more degrees. Each section of the stroke cycle affects what happens in the next section, and is affected by what has happened in the section before.

When there is an error in position or movement of one body part, it introduces error into the other parts connected to it. Those parts must do something to compensate and recover from the error. When there is error in one section of the stroke cycle, the next section begins at a disadvantaged position and greater intervention is required to compensate or correct and get the stroke cycle back onto its ideal pattern. The error creates negative feed-back into the system – we might say it ‘holds back’ the effectiveness and efficiency of the system. This compensation and correction uses up a great deal of energy, even if the athlete ends up correcting quickly and making it look OK from the outside.

When a body part is kept in its ideal position, maintaining its ideal movement, it sets up the other parts to more easily find their ideal position and movement. When one section of the stroke cycle moves through its ideal pattern the next section is at an advantage to find its ideal pattern as well. When that next section also moves through its ideal pattern the next section benefits too, and so on. This crates a positive feed-forward flow. The more consistent this feed-forward process is, the more effective and efficient the swimmer is. Not only that, the more amazing the stroke feels to that swimmer.

Photo by Clint Adair on Unsplash

Everything is interconnected in the repeating movement pattern of the whole body. No swimmer starts with all the parts finely interconnected, just as no musician starts with a perfect performance in a piece of new music or group of musicians starts playing together with perfect coordination. You first start by making basic connections – pairs of connections – in the body, and eventually you connect those pairs to each other until the entire system of sections of the stroke cycle are connected into a rhythmic loop of action.

This principle of connections applies to all four strokes, but with more or less emphasis on certain connections depending on the style. Let’s apply it to the freestyle stroke since it is most popular…

We need to make a connection between the front (upper) and rear (lower) part of the body and the primary connection point is at the pelvis/hips. What happens in the front of the body will affect the rear and what happens at the rear will affect the front. If these two are connected well, they will feed-forward into each other. If not connected well, they will cause feed-back.

We need to connect the entire streamline side of the body, front wrist to ankle because the body will be supported on its side and water will be displaced primarily by that side. Water will respond better to a body that is straight and connected along the whole line, and respond worse to a body that is not. What happens on this side of the body will affect what is happening on the other.

We need to connect the recovery swing to forward momentum so that force will flow in the direction of travel and not work against the streamline side of the body. What happens on the recovery side affects what is happening on the streamline side.

We need to connect the two sides of the body at the moment of transition, so that the force generated on the catch side flows without obstruction into the streamline side to maximize forward motion.

I listed these in an order as if these are in a line, but they are not because the stroke is a loop of rhythmic action. When we view these as a loop then we see that you can intervene at any one of these connections to make a change – but you must keep a careful eye on how a change in that part will necessarily affect the other parts.

That is a broad systems view of the whole body system in the stroke cycle. We can also apply this view to the arm/shoulder motion itself. The ideal catch feeds-forward into the exit. The exit feeds forward into the recovery swing. The recovery swing feeds forward into the entry. The entry feeds forward into the extension. The extension feeds forward into the catch, and so on again and again in an ideal pattern.

You might start learning these parts separately, one-by-one, and that may be necessary for most people. But these parts cannot remain separated in your nervous system for long or you will be stifled in your progress. Any advanced guidance on adjustments in your stroke should have more and more systems language involved because, by that stage, you should be attentive to the interdependent relationships of the parts, of the sections of the stroke. A musician must eventually connect the sections of the music together and create a smoothly flowing whole.

If you are looking to fix an error in one section of your stroke cycle, you may want to first consider whether that error is a cause or a symptom of another error in a preceding section. Fixing this section should make things better for the next section (if those are truly connected in your movement pattern already). But if you consider fixing the section before, you might discover that this section either is easier to fix or possibly the problem goes away altogether.

When you make a correction in one body part, in one section of your stroke cycle, be aware that it may confuse the body parts connected to it because they have been used to compensating for an error and now they need to learn how to actually work when there is no error to compensate for. When you tighten one string on a guitar you may need to slightly re-tune the string next to it, because the changing of tension in one string may noticeably changes the tension on the next one or even all of them. Tuning the guitar, and tuning the stroke require systems thinking.


Translate ยป